

Application-Driven Broadband Metrics

January 2011

Goal of this Contribution

Identify the metrics on which to base Broadband Performance Results

Why Metrics?

- Presentation relies on metrics
- Metric choices determined by
 - Application needs
 - Broadband performance attributes
 - User behavior
- Define solid fundamentals and the presentation will follow

Application Classes

- Real Time (RT) Applications
 - VoIP (conversational voice); Video conferencing (conversational video)
- Near-RT Applications
 - Streaming video; Streaming audio
- Time Sensitive, Interactive
 - Gaming; Remote video (nanny cams, security)
- Transactions
 - Web browsing; E-commerce
- Background
 - Email; Peer-to-peer

Application/QoS Resources

Figure 2/G.1010 – Model for user-centric QoS categories

- Standards-based source documents
 - ITU Recommendation G.1010¹
 - 2001 publication, some specifics outdated
 - 3GPP TS 22.105 V9.0.0²
 - Broadband Forum TR-126³
- Need to apply context
 - Requirements written for QoS-enabled networks cannot be applied directly to Internet, which is Best Effort
 - Applications designed for Internet tolerate wide variation in conditions

Broadband Performance Attributes

- Rate (subcategories and terms as used here)
 - Sustained rate performance sustained over extended periods
 - Burst rate initial performance exceeding sustained rate
 - Reliability the probability with which a given rate is met or exceeded at a given point in time
- Latency
 - One way or round trip delay
- Jitter
 - Variation in delay
- Packet/frame loss
 - Packets or frames which are not received

User Behavior

- Concurrent applications
 - On the same device
 - On multiple devices in a subscriber's network
- Diurnal patterns
 - Time-of-day dependency

Application Classes and Performance Attributes

Real Time Applications

- VoIP and video conferencing applications
 - Continuous, near constant rate traffic
 - Network rate must be sustained and highly reliable
 - Performance below established rate for as little as 50 ms can cause dropouts
 - Latency should be low
 - 150 msec (one way, path from mouth to ear) is the threshold for natural interactive conversation
 - Jitter should be low
 - De-jitter buffers may be as short as 50 msec
 - Jitter exceeding buffer length causes buffer under- or over-runs, loss of data
- VoIP: low rate (≈100 kbps)
- Video conferencing: wide range of rates
 - Connect rate based on network speed
 - 256 kbps to 2 Mbps typical for consumer apps
 - HD teleconferencing (e.g., Cisco ūmi) requires at least 1.5 Mbps
 - Trend towards increasing rates

Near-RT Applications

- Streaming video
 - 51% of NA consumer Internet traffic in 2010 (and growing)⁴
 - Virtually all sent over TCP
 - Transfer rate dependent on client/server combination
 - Some send as fast as network (and TCP) allows
 - Some match playout rate after initial buffering period
 - Network rate must be sustained and reliable
 - Performance below playout rate for several seconds can cause freezes while re-buffering
 - Large file sizes
 - 10 minute video @ 1 Mbps → 75 Mbytes
 - 45 minute video @ 3 Mbps → 1 Gbyte
- Streaming audio similar (lower rates, smaller files)

Video Streaming Rates

- Downloads captured from popular sources
 - YouTube, Hulu, Vimeo, ABC, CBS, NBC, Fox, Netflix
 - Random, not exhaustive
- Playout rates from 280 kbps to over 3.8 Mbps
 - Wide variety across the range

Streaming video rates - random tests

Video Streaming Rates (2)

- Data collected from YouTube
 - Spring 2009:
 - Standard and "High Quality" rates from ≈200 to ≈700 kbps
 - Fall 2010:
 - 240p through 1080p rates from 280 kbps to 3.6 Mbps
 - 4k stream rate (not shown in chart) = 20.5 Mbps
- Rapid upward trend and growing range in playout rates
 - Fixed rate streaming test does not capture this range

Time-Sensitive Interactive Applications

Gaming

- Bursty traffic, low average rate (<<1 Mbps)
 - User inputs transmitted upstream
 - Multiplayer activity transmitted downstream
 - Game environment rendered locally
- Latency is primary performance factor
 - Unless compensated by game server, player with lowest latency has advantage
 - High latency creates inconsistent experience between remotely located players
- Jitter appears as variable latency
 - Inconsistent performance
- Packet/frame loss causes retransmission, appears as variable latency
 - Inconsistent performance

Transactions

- Web browsing performance
 - Above about 5 Mbps, latency is much more important than rate
 - For an average web page
 - Doubling rate from 10 → 20 Mbps improves response time by less than ¼ second
 - Decreasing round trip latency by 10 ms has the same effect on response time as increasing the rate by 1 Gbps
- Above conclusions are not intuitive!
 - Repeatedly justified in the literature^{5,6,7}
 - See following slides

Transactions (2)

How long does it take to load a web page?^{5,6}

$$R \approx \frac{Size}{Bandwidth} + Turns \cdot RTT + Cs + Cc$$

Parameters

- -R = page load time
- Size = total data to be transferred
- Bandwidth = speed between client and server
- Turns = effective # of round trips
- -RTT = Round Trip Time
- Cs = server processing time
- -Cc = client processing time

Transactions (3)

- Effective turns
 - Effective number of round trips waiting for: DNS responses;
 establishing TCP connections; HTTP Gets; TCP slow starts; etc.
 - Less than total number of round trips due to: TCP windowing; parallel TCP connections; etc.
- Simplified example below requires 4 effective turns

Transactions (4)

$$R \approx \frac{Size}{Bandwidth} + Turns \cdot RTT + Cs + Cc$$

- Two network dependencies for browsing performance:
 - Rate (Size / Bandwidth)
 - Latency (*Turns* x *RTT*)
- Latency is multiplied by the effective number of turns required to load a web page
 - This factor sets a floor on response time which cannot be bettered even with infinite rate
- Web page statistics
 - 2001 survey⁵ of Keynote Business-40 web sites
 - Average size ≈ 100 kBytes
 - Average effective turns ≈ 40
 - 2009 survey⁸ of top 25 web sites per ranking.com (portal sites)
 - Average size ≈ 480 kBytes
 - Average effective turns ≈ 58

Transactions (5)

Effects of Rate and RTT on Web Page Response Time

Background Applications

Email

- Small file sizes: no significant rate dependency
- Non-RT: tolerant of latency and jitter
- TCP: tolerant of packet/frame loss

Peer-to-Peer

- Large file sizes: Higher sustained rate improves transfer times
- Non-RT: tolerant of latency and jitter
- TCP: tolerant of packet/frame loss

Application Performance Factors

Applications	Rate	Latency	Jitter	Packet/frame loss
VoIP, video conf.	 Video rates from 256 kbps to >2 Mbps and increasing – Sustained rate critical, must be very reliable – Burst rate: N/A 	Important<150 msec	Important≤ size of jitter buffer	• Tolerates moderate loss (≈1%)
Video (or audio) streaming	 Rates from 256 kbps to 4 Mbps and increasing Sustained rate critical, must be reliable Burst rate helps with initial buffering 	Tolerated	Tolerated	• Tolerates moderate loss (≈1%)
Gaming	Secondary to latency in importanceTraffic is bursty, average <<1 Mbps	Important As low as possible	As low as possible	As low as possible
Web browsing	• Rates (sustained or burst) above ≈5 Mbps have little effect on response time	Can be more important than rate	Tolerated	• Tolerated (TCP)
Email	 Rates (sustained or burst) have little effect on response time 	Tolerated	Tolerated	• Tolerated (TCP)
Peer-to-peer	 Higher sustained rate improves transfer time Burst rate: N/A 	Tolerated	Tolerated	• Tolerated (TCP)

User Behavior and Performance Attributes

Concurrent Applications

- Devices support multiple applications in parallel
- Home networks support multiple devices in parallel
 - Multiple video streams (to PCs and TVs)
 - Web browsing
 - VolP
- Higher rate performance becomes more important to support concurrent flows
 - Consumer education is important
- Concurrent flows may inhibit "burst rate" features

Time of Day Variation

- Diurnal traffic patterns are well known (above example from [9])
- Performance during busy hour may be significantly different from 24hour average
 - Much heavier loading on network
 - Higher probability of congestion
- Separate results for peak and off-peak periods
 - 24-hour averages are less informative

Metrics

Metrics

- SamKnows tests are capturing data for all metrics listed below
- Sustained rate (downstream and upstream)
 - Sustained (30 second) metrics from download and upload speed tests
 - If first 5 seconds is significantly different (burst rate) may need to exclude it from sustained metric (use seconds 5-30)
 - Critical for: VoIP; video conferencing; streaming media; multiple concurrent apps
 - Helpful for: gaming; web browsing; large file transfers
- Burst rate (downstream and upstream)
 - Burst (5 second) metrics from download and upload speed tests
 - Helpful for: streaming media; gaming; web browsing
- Latency
 - From UDP latency/loss tests
 - Important for: VoIP; video conferencing; gaming
 - Helpful for: web browsing
- Jitter
 - From UDP latency/loss tests
 - Important for: VoIP; video conferencing; gaming
- Packet/frame loss
 - From UDP latency/loss tests
 - Helpful for: VoIP; video conferencing; streaming media; gaming

Metrics vs. Presentation

- Metrics: inputs for analysis
 - Detailed
 - Comprehensive
 - Technical
 - Too complex for presentation "as is" to consumers
- Presentation: results of analysis → published data
 - Informative
 - Understandable
 - Usable
 - Simple
- Data values may help determine presentation
 - Example: latency, jitter, loss values may lie within acceptable ranges and may not need emphasis (e.g., Ofcom report¹⁰)

Issues and Caveats

- Latency, jitter, packet/frame loss require cautious approach
 - Example: latency
 - Meaningful metric is end-to-end but distance (nodes, miles, etc.) between every pair of endpoints is different
 - Latency across access/aggregation network rarely represents end-to-end experience
 - May be best to assess against well-documented threshold (e.g., 150 msec for interactive conversation^{1,2,3})
- Internet is Best Effort
 - Beware of wording that leads people to infer otherwise!
- Presentation should emphasize busy hour performance
- Terms ("reliable," "highly reliable") require definition

References

- 1. ITU Recommendation G.1010, "End-user multimedia QoS categories," November 2001.
- 2. 3GPP TS 22.105 V9.0.0, "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Service aspects; Services and service capabilities (Release 9)," December 2008.
- 3. Broadband Forum, Technical Report TR-126, "Triple-play Services Quality of Experience (QoE) Requirements," December 13, 2006.
- 4. Cisco, "Cisco Visual Networking Index Forecast and Methodology, 2009-2014," June 2, 2010.
- 5. Sevcik, P., and Bartlett, J., "Understanding Web Performance," NetForecast Report 5055, October 2001.
- Savoia, A., "Web Page Response Time 101," STQE Magazine, Vol. 3, Issue 4, July/August 2001, pp. 48-53.
- 7. Cheshire, S., "Latency and the Quest for Interactivity". White paper commissioned by Volpe Welty Asset Management, L.L.C., for the Synchronous Person-to-Person Interactive Computing Environments Meeting, San Francisco, November 1996.
- 8. ADTRAN, "Defining Broadband: Network Latency and Application Performance," comments to FCC, June 2009.
- 9. Thompson, K., Miller, G., Wilder, R., "Wide Area Internet Traffic Patterns and Characteristics," IEEE Network, November/December 1997.
- 10. Ofcom, "UK Broadband Speeds," May 2010.